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J.  Phys. A :  Math. Gen. 22 (1989) 43034330. Printed in the UK 

Traceless Cartesian tensor forms for spherical harmonic 
functions: new theorems and applications to electrostatics of 
dielectric media 

Jon Applequist 
Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 5001 1, USA 

Received 21 February 1989 

Abstract. A solid spherical harmonic of degree n at a point r takes the tensor contraction 
form A("',n,r", where A'"' is a totally symmetric and traceless nth-rank Cartesian tensor. The 
utility of this form rests on the properties of a detracer operator Yn which transforms any 
totally symmetric nth-rank tensor to a totally traceless form. In particular, the components 
of the tensor 3 , r " ,  which is related to the nth gradient of r - l ,  are spherical harmonics with 
properties analogous to those of the tesseral harmonics YF(O,4) ,  including adherence to 
an addition theorem and an 'Unsold' theorem. These properties lead to new formulae for 
the Legendre polynomials and their derivatives in terms of Cartesian tensors. The traceless 
Cartesian tensor forms are used to treat problems in electrostatics of a dielectric medium 
requiring spherical harmonic expansions of the potential. These include the potentials 
arising from an arbitrary charge distribution in a spherical dielectric cavity, the reaction 
field gradients in the cavity, the response of a dielectric sphere embedded in a dielectric 
medium to an arbitrary external field, and the gradients of the Lorentz internal field in a 
homogeneous dielectric. Expressions are obtained for nth-order field gradients and induced 
multipole moments in Cartesian tensor form. 

1. Introduction 

A function f ( x ,  y ,  z )  of the Cartesian coordinates is called a solid spherical harmonic of 
degree n if f is homogeneous of degree n in x ,  y ,  z and satisfies the Laplace equation 
V 2  f = 0. These functions occur widely in physics in such diverse problems as potential 
theory, hydrodynamics, conduction of heat and sound, diffusion, wave motion, and 
the quantum theory of angular momentum (MacRobert 1947, Margenau and Murphy 
1956, Sommerfeld 1949, Edmonds 1974). 

This paper is concerned with some new methods of treating spherical harmonics 
in Cartesian form. The methods are based on certain connections between spherical 
harmonics of degree n and traceless Cartesian tensors of rank (or order) n. Two such 
connections are touched upon in the literature and will be developed here: (i) if a 
traceless tensor of rank n is independent of x, y ,  z ,  then its components serve as the 
constant coefficients in a spherical harmonic of degree n (MacRobert 1947, p134); and 
(ii) there is a class of traceless tensors of rank n whose components are themselves 
nth-degree spherical harmonic functions of x , y , z  (Gray and Gubbins 1984, p493). A 
simple example will illustrate both of these connections. The function 
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is a solid spherical harmonic of degree 2. The constant coefficients 2, -1, -1 comprise a 
diagonal tensor of rank 2, and their sum vanishes. Furthermore, the function in (1.1) is 
one of a set of functions which together constitute a traceless Cartesian tensor of rank 
2. These functions, referred to here as Cartesian basis spherical harmonics, are closely 
related to the gradient tensor V V r - ‘ .  

Traditional treatments of physical problems involving spherical harmonics usually 
employ the spherical polar coordinates r ,  e,$ and use as basis functions the tesseral 
harmonics, which are related to the associated Legendre functions Pr(cos e). For 
example, (1.1) is equivalent to 

where each term on the right is itself a solid spherical harmonic of degree 2. Similarly, 
any potential function which obeys the Laplace equation can be expanded in terms 
of the tesseral harmonics (Bottcher 1952, p469). When this is done, the coefficients 
of the spherical basis functions comprise spherical tensor forms for physical quantities 
of interest, such as multipole moments of charge distributions or gradients of the 
potential at some origin. A major aim of the present work is to provide an analogous 
spherical harmonic formalism in which the coefficients of the basis functions used in 
an expansion comprise Cartesian tensor forms for the physical quantities of interest. 
The formalism is used here to solve a number of problems in the electrostatics of 
dielectric media containing embedded spheres or spherical cavities. These yield several 
higher-order relationships which, to the best of my knowledge, have not been obtained 
previously by either spherical or Cartesian tensor methods. 

The connections between Cartesian and spherical tensors and their relative merits for 
various problems have been discussed by Stone (1975, 1976) and by Gray and Gubbins 
(1984). For our purposes it may be noted that nth-rank symmetric and traceless 
Cartesian tensors are equivalent to nth-rank spherical tensors, in that both have 2n + 1 
independent components and are related to each other by a linear transformation. 
The Cartesian tensor forms for multipole moments and potential gradients have the 
conceptual advantage of being straightforward extensions of one-dimensional moments 
and gradients, and they have the practical advantage of being easily incorporated into 
electromagnetic theory in the conventional Cartesian form. It would appear that the 
reason Cartesian tensors have not been more widely used in spherical harmonic theory 
is that the procedure for obtaining the symmetric and traceless part of an nth-rank 
tensor has not been well understood. This procedure is expressed in the present work 
by means of an operator F,, (the ‘detracer’), which takes a number of explicit forms. 
Most of the results obtained here follow from the special properties of the detracer, 
which have been partially demonstrated elsewhere (Applequist 1984) and are developed 
more fully here. 

In what follows, @ 2-4 deal with background in tensor notation and the basic 
properties of tensor contraction forms for homogeneous polynomials and spherical 
harmonics. Section 5 develops some forms of the detracer operator and its properties. 
Sections 6 and 7 relate the Cartesian basis spherical harmonics to the gradients of r-l  

and to the Legendre polynomials. Section 8 is a collection of further matters concerning 
the Cartesian basis spherical harmonics, including relations for gradients and integrals, 
linearly independent subsets, relations to tesseral harmonics, and particular values 
of the functions. Section 9 treats the electrostatic potentials of an arbitrary charge 
distribution in a dielectric cavity, including the nth-order potential gradients, using 
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primarily the principles in $8 5-7. Section 10 uses similar methods to treat the 
electrostatics of a dielectric sphere embedded in a dielectric medium, including the field 
gradients and induced multipole moments in the sphere, with special attention given 
to the Lorentz internal field and its gradients. 

2. Notation 

2.1. Tensors 

A Cartesian tensor of rank n will be denoted either by a boldface sans-serif symbol A(") 
or by the component notation At:  ,2,,, following the convention that Greek subscripts 
denote Cartesian axes 1,2,3 (corresponding to x, y ,  z respectively). The complete tensor 
is an array of 3" components. If A t ! , , ,  is invariant under any permutation of the 
sequence r l  . . . E,, the tensor is said to be totally symmetric. The compressed form of a 
totally symmetric tensor A(n) is an array of the (n+ l ) (n+2) /2  independent components 
of A'n) .  It will sometimes be convenient to represent the components of the compressed 
tensor by A(") (n ln2n3) ,  where n, is the number of times i occurs in the index set ctl . , . SI,, 

and n,  + n2 + n3 = n. The components of the polyadic tensor r", where Y is a position 
vector, may thus be written r,, . . . r,,, or xniyn*zn3. 

2.2. Tensor contractions 

An n-fold contraction will be indicated by . n ., as in 

where the convention of implied summation over repeated Greek subscripts is followed. 
For totally symmetric tensors, the contraction may be expressed in terms of the 
compressed forms by (Applequist 1983) 

g ( n  ; n I n2 n3 A 01) ( n  n2 n3 ) B ( n )  (n  I n2 n3 ) (2.1) A(") . . B(") = 

n i n m  

where 

g(n;n,n,n,) = n! /n , !n , !n , !  

and the sum in (2.1) is over all non-negative indices such that n,  + n2 + n3 = n, 

2.3. Traces 

The trace of A'") in one index pair is denoted by 

a tensor of rank n-2. If the trace vanishes regardless of which index pair is contracted, 
the tensor is said to be totally traceless. A totally symmetric tensor which is traceless 
in one index pair is traceless in all index pairs, and is said to be totally symmetric and 
traceless. In compressed tensor notation, the trace can be written 
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where n ,  + n, + n3 = n - 2. The trace of A(") in m index pairs, called an 'm-fold trace', 
is written 

(2.3) , 4 ( n : m )  - - A(") 
5L2,,,+1 ... xri i'l L'I - . i 'n>h"~2, , ,+1  ..% 

a tensor of rank n - 2m. In the present work we will be concerned with m-fold traces 
of only totally symmetric tensors, so the notation of (2.3) applies to any m-fold trace. 
In compressed tensor notation, the m-fold trace is 

(2.4) 

where n ,  + n2 + n3 = n - 2m and the sum is over all non-negative indices such that 
k, + k, + k, = m. The trinomial coefficient g(m;  k,k,k,) appears here as the number of 
ways one can place k, pairs 11, k, pairs 22, and k, pairs 33 in the indices v l v l  ... v,v, 
of the m-fold trace. 

3. Homogeneous polynomials 

3.1. Tensor contraction lemma 

Let r be the Cartesian vector (x, y , z ) ,  and let r" be the direct product of the n vectors 
Y, a Cartesian tensor of rank n. Let h,(r) be a polynomial in x ,y ,z  of degree n. The 
tensor contraction form for homogeneous polynomials, stated in the following lemma, 
is basic to the present formalism. 

Lemma. An nth-degree polynomial h,(u) is homogeneous in x , y , z ,  of degree n, if and 
only if 

h,(r) = A(") . n * r" (3.1) . 

where A(") is a Cartesian tensor of rank n, independent of r.  

Proof: By definition, h, is homogeneous of degree n if and only if h,(tv) = t"h,(r). 
This condition is met by the right-hand side of (3,1), regardless of whether the set of 
coefficients A(") constitute a tensor. Furthermore, (3.1) includes all possible polynomial 
terms satisfying this condition. It remains to prove that A(") is a tensor, given the form 
of (3.1). The right-hand side can be regarded as the scalar product of the 3"-dimensional 
column vectors A(") and Y", and can be written in the matrix form A("ITr", where T 
denotes transpose. If we place a second set of Cartesian axes, rotated with respect to 
the original set, into the space of the function, the value of h, does not change at any 
point. However, r" at each point is transformed to Ar" with respect to the new axes, 
where A is an orthogonal matrix of order 3" (Applequist 1983). It follows that A(") 
is transformed to AA@) with respect to the new axes, so that the transformed h, is 
A(")TATAr" = A(")T~f l ,  an invariant under rotations. From this transformation property, 
A(") is a Cartesian tensor of rank n (Jeffreys and Jeffreys 1962). 



Cartesian tensor forms for spherical harmonics 

Comment. Since Y" is totally symmetric, we may rewrite (3.1) as 

h,(v) = Ab$,, . n . Y" 
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(3.2) 

where A:$, is the totally symmetric tensor defined by 

where the sum is over all permutations of the symbols a, ...a,,, regardless of their 
numerical values. Thus a homogeneous polynomial can always be expressed as a 
contraction of totally symmetric tensors. In what follows we will omit the subscript 
'sym' in (3.2), as we will deal primarily with totally symmetric tensors. 

3.2. Tensor projections 

Let a direction in space be specified by the unit vector P = r / r .  Just as a . P  is the 
projection of the vector a along the direction E, Ai") . n * U" is the projection of the 
nth-rank tensor Ai") along P. This may be seen by a simple example in which P is 
directed along axis 3, i.e. i, = d3,, the Kronecker delta. Then 

which is the component of Ai") along axis 3. One obtains the same result for general 2 
by transforming A(") to a rotated coordinate system in which axis 3 lies along P. Thus 
we have a simple geometrical interpretation of the homogeneous polynomial of (3.1) 
as r" times the projection of an nth-rank tensor. 

3.3. Linear independence 

The recognition of the linearly independent functions in a spherical harmonic expansion 
is essential in physical applications. The expansions used in the present Cartesian tensor 
formalism employ functions that are not always linearly independent, so it is important 
to establish the linear independencies that do apply. The following lemma and its 
corollaries are cited to bring together certain independencies among homogeneous 
polynomials and distinguish them from a special case of surface spherical harmonics 
discussed in 5 4.2. 

Lemma. If A(") is a totally symmetric tensor, independent of Y, and Ai") n . Y" E 0, then 
all components of A(") vanish. 

Proox From (2 .2)  

It follows that A(") = 0 because the terms x"1 yn2z"3 are linearly independent. 

Corollary I .  If A(") is a totally symmetric tensor, independent of r ,  and Ai") n v" = 0, 
then all components of Ai") vanish. 
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Comment. The corollary means that a totally symmetric nth-rank tensor vanishes if its 
projection in all directions vanishes. 

Corollary II. If A(") is a totally symmetric tensor, independent of Y, for all n and 

n=O 

then A(n) = 0 for all n. 

Proof: The terms of the sum are homogeneous polynomials of different degrees and 
are, therefore, linearly independent. Hence A(") . n . ~ "  0 for all n. The corollary follows 
from the above lemma. 

3.4.  Gradient theorem 

The following gradient theorem is fundamental for homogeneous polynomials and is 
useful in electrostatic problems. We employ the gradient operator V = a/&. 

Theorem. If hn(v )  = A(") . n . Y" and A(") is a totally symmetric tensor, independent of Y, 
then 

k )  . Y"' (3.3) 

for k = 0, 1, . . . , n. 

Proof: We have 

V,hn = V , 4 '  x , , r z ,  . . . rz,, 
- A(") - x1 ?,, (J3,/1rx2 ' . . ra,, + . a ' + r*, . ' . Ja,J) 

- - HA(") . ( n  - 1) . rn-l 

which proves the theorem for k = 1. Assuming (3.3) to be true for the kth gradient, 
one finds by the same differentiation process that it holds for the ( k  + 1)th gradient. 
The theorem follows by induction. 

The theorem shows that each component of the kth-rank tensor Vkh, ( r )  is a 
homogeneous polynomial of degree n - k. 

3.5. Generalised Euler theorem 

An immediate consequence of the gradient theorem is the following generalised Euler 
theorem for homogeneous polynomials. The Euler theorem is usually stated only for 
k = 1 (see, for example, Chaundy 1935). 

Theorem. If h,(v) is a homogeneous polynomial of degree I I  (n  2 0), then 

n !  
( n  - k ) .  

y k  . k Vkh,(Y) = ~ , hn (VI  (3.4) 

f o r k = 0 , 1 ,  . . . ,  n. 

Proof: Equation (3.4) follows from (3.3) by contracting r k  with both sides of the latter. 
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4. Spherical harmonics as tensor contractions 

Hobson (193 1 )  defines ordinary spherical harmonics of degree n, a non-negative integer, 
as spherical harmonics which are polynomials of degree n in x, y ,  z ,  together with the 
corresponding harmonics of negative degree -n - 1, obtained by multiplication of 
the former by r-2n-'. This is the class of spherical harmonics with which physics is 
primarily concerned, and we will not deal with the more general class (Hobson 1931, 
p163, p178). 

4.1. Tensor contraction theorem 

We seek a criterion for those homogeneous polynomials which satisfy the Laplace 
equation. This is supplied by the following theorem. The theorem paraphrases, in 
tensor notation, a relation among polynomial coefficients that has been demonstrated 
for specific cases (Whittaker and Watson 1927, MacRobert 1947, p134). The theorem 
is central to the formalism of this paper, and a proof is in order. 

Theorem. If A(") is a totally symmetric tensor, independent of Y, and f,(v) A(") * n . Y", 

then f, is a solid spherical harmonic of degree n if and only if A(") is totally traceless. 

Proqfi Since f, is homogeneous of degree n (6 3.1), it remains to show that the Laplace 
equation is satisfied. For n 2 2, (3.3) gives 

the last equality being true for all Y if and only if A!;53,,,5n vanishes; i.e. the Laplace 
equation is satisfied if and only if A(") is totally traceless. For n = 0 or 1 the theorem 
is trivial. 

From the Kelvin theorem (MacRobert 1947, p74) we have the following corollary. 

Corollary. If A(") is a totally symmetric tensor, independent of Y, then r-2"-'A(fl) . n . Y" 
is a solid spherical harmonic of degree -n - 1 if and only if A(") is totally traceless. 

From the definition of a surface spherical harmonic as a solid spherical harmonic 
evaluated at r = 1 we have another corollary. 

Corollary. If A'") is a totally symmetric tensor, independent of Y, then A(") * n . P is a 
surface spherical harmonic of degree n if and only if A(") is totally traceless. 

4.2.  Linear independence of surface spherical harmonics 

We return to the question of linear independence raised in 6 3.3, where the independence 
of terms in a homogeneous polynomial led to a criterion for the vanishing of a 
symmetric tensor A("). The following theorem broadens the criterion to a vanishing 
sum of tensor projections, but only under the condition that the tensors be traceless as 
well as symmetric. 
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Theorem. If A(n) is a totally symmetric and traceless tensor, independent of Y, for all n 
and 

then A'n) = 0 for all n. 

Proof: The summand of (4.1) is a surface spherical harmonic of degree n. Surface 
spherical harmonics of different degrees are mutually orthogonal (Hobson 193 1, p144) 
and, hence, linearly independent. Thus A(") . n .  P = 0 for all n. The theorem follows by 
corollary I of 4 3.3. 

Comment. The theorem does not imply that all components of P for all n are linearly 
independent, and in fact one can find sets of coefficients, not all zero, such that the 
sum of terms vanishes; e.g. 5?* + j 2  + i2 - 1 0. However, such coefficients do not 
constitute traceless tensors, and the theorem would not apply if A(") were not both 
traceless and symmetric. On the other hand, the restriction to traceless tensors does 
not apply to the corresponding case of general homogeneous polynomials, as seen in 
corollary I1 of 4 3.3. 

5. The detracer operator 

The detracer F,, is an operator which acts on a totally symmetric tensor A(") so that 
F- ,A(" )  is a totally symmetric and traceless tensor of rank n. This operator plays a 
major role in generating Cartesian tensor forms for spherical harmonic functions. The 
operator and some of its properties have been employed previously (Applequist 1984, 
1985). A fuller development is supplied here. 

5 .1 .  The detracer theorem 

We define .T,, by 

where [n /2]  denotes the largest integer not exceeding n / 2  and the sum over T { E )  is 
the sum over all permutations of the symbols x1 . . . E ,  which give distinct terms. The 
odd factorial (2k - 1) ! ! is defined as 1 x 3 x 5 x . . . x ( 2 k  - l) ,  with (-1) ! ! = 1. 

Theorem. If Ai") is a totally symmetric tensor of rank n, and B(n) = F a A i n ) ,  then B(") is 
a totally symmetric and traceless tensor of rank n. 

Proof: The total symmetry of B(n) is ensured by the summation over distinct permuta- 
tions of indices in (5.1). It remains to show that B(":') = 0. When we take the trace in 
indices a l x 2 ,  (5.1) gives 

k=l T { a )  
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where the c,,k are coefficients which will be shown to vanish. Through the permutations 
of indices, the terms in (5.2) arise in the following four ways. 

(i) c(, and ct2 occur in the factor B a l g 2 ,  whose trace is 3. Terms in (5.2) arise from 
terms in (5 .1)  with m = k. The contribution to C,k is thus 3(-l)k(2n - 2k - l ) ! ! .  

(ii) sll and a2 occur in separate factors 6glap and (Tz22y, giving a factor SUpaq in the 
trace. Terms in (5.2) arise from terms in (5.1) with m = k. The factor bapgq in (5.2) may 
arise from either 6z,zp6a2zv or 8g,aqS222p in (5 .1) ,  and any of the k - 1 6 factors in (5.2) 
may arise in this way. The contribution to C,t,k is therefore 2(k - 1)(-l)k(2n -2k - 1 )  ! !. 

(iii) a ,  and cx2 occur in the factor A(":m) in (5.1).  On taking the trace, a term in A(":k) 
arises in (5.2) with k = m + 1. The contribution to C,k is thus (-l)k-l  (2n - 2k + l ) ! ! .  

(iv) giving rise to 
a term in A("') with k = m and ap substituted for z2. The same term arises from that 
in which a1 and a2 are interchanged, and up can be any of the n - 2k indices of A(":k). 
Hence, the contribution to Cn,k is 2(n - 2k)( - l )k (2n  - 2k - l ) ! ! .  

occurs in a factor of 8z,1p, and a2 occurs in the factor 

Thus we have 

Cn,k = ( - l )k (2n  - 2k - 1 ) ! ! [ 3  + 2(k - 1 )  - (2n - 2k + 1) + 2(n - 2k)l 

= o  

which completes the proof. 

Corollary. If B(") is a totally symmetric and traceless tensor of rank n, then 

Proof: Since all traces vanish, the only remaining term in (5.1) is that for m = 0. The 
result is (5.3). 

Note. It may be noted that the detracer is a projection operator in that it projects 
out of a general symmetric tensor of rank n that irreducible part which transforms 
as a tensor of rank n (McWeeny 1963, Gray and Gubbins 1984, p490). However, 

lacks the property of idempotency usually associated with a projection operator; 
i.e. FnFn # Fn. We may define another detracer 9" = [(2n - 1)!!]-'Yn, which, by 
(5.3) satisfies 9,,gH = g,,, and is therefore a true projection operator. The operator Fn 
is more firmly associated with the theory of multipole moments and the gradients of 
l / r  (Applequist 1984), and is therefore retained in the present work. Should 9" prove 
more desirable in any application, its substitution for Y,, is a simple matter. 

5.2. The detracer exchange theorem 

The following theorem and its corollary make possible some important transformations 
of spherical harmonic expressions. 

Theorem. If A(") and B(") are totally symmetric tensors of rank n, then 

Proof: The theorem follows by expanding each side of (5.4) according to (5.1). 
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Corollary. If A(") and B@) are totally symmetric tensors of rank n, then 

3,A'")  . n . r n B ( n )  = (2n - I)! !A(") . n .  y n B ( n ) .  

Proof: From (5.4) we have 

ynA(f l i  . n .  y n B ( f l )  = A(n) . n .  y B(") n n  

which becomes (5.5) by use of (5.3). 

(5.5) 

5.3. The detracer ,for compressed tensors 

It is often more convenient to work with compressed tensors (Applequist 1983) than 
with the complete tensors of (5.1). We obtain here the form of Fn appropriate to 
such tensors. In (5.1) the non-vanishing terms are those containing traces of the form 
A('7:m)(n,-2m1,n2-2m,,n3-2m3), where 2mi 5 n,, nl+n2+n3 = n, and ml+m,+m3 = m. 
The number of times this term occurs in the sum over T { a )  is the number of ways m, 
distinct pairs of symbols r,x, can be selected from those symbols among ctl . . .E, which 
take the value 1, times the corresponding numbers for m2 and m3 pairs. The number 
of ways of selecting m distinct pairs of objects from n distinct objects is 

Thus (5.1) becomes 

ml=O m2=O m3=0 

x [ :,] [ :] [ :3] A("'"'(nl - 2m,, n2 - 2m2, n3 - 2~2,). 

With (2.4) this provides the means of constructing the traceless form of a compressed 
tensor. 

5.4. The detracer in tensor form 

The detracing operation of (5.1) is a linear combination of components of the tensor 
A'"), and is expressible as a tensor contraction. It will help to complete the discussion 
of Fn to give the tensor form of this operator. Let A(') be a totally symmetric tensor, 
and let B(n) = S,A("j. Then we require a tensor of subdivided rank y ( " s n )  (Applequist 
1983) such that 

From (2.3) and (5.1) it can be seen that 

m=O 
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where the sum over T ( a p )  is the sum over all identical permutations of the sets a l  . . . E , ,  

and p ,  . . . p, giving distinct terms. For example, (5.8) gives for n = 3 

so that, from (5.7), 

in agreement with the result from direct application of (5.1) (Applequist 1984). 
be shown that F("*") is an isotropic tensor of rank 2n from its transformation 

It can 
under 

rotation of coordinate axes and that the tensor is totally symmetric and traceless within 
each index set a l  . . . rx, and ,B, . . . p,. 

6. Gradients of r-l as spherical harmonics 

Maxwell first derived a general expression for a solid spherical harmonic of degree 
-n- 1 as the nth-order gradient of r-l with respect to a set of n arbitrary axes (Hobson 
1931, p131). When all of the axes coincide with Cartesian axes, his formula for the 
gradient reduces to 

Vny-1 = ( - l ) n y - 2 n - l r , l y n .  (6.1) 

This relation has been given previously (Applequist 1984) with the observation that 
it is equivalent to a relation obtained by Burgos and Bonadeo (1981) by another 
route. Equation (6.1) leads to two important conclusions: (i) the components of the 
tensor F,Y" are solid spherical harmonics of degree n, and (ii) the components of the 
tensor F,,P are surface spherical harmonics of degree n. An example is given in (l . l) ,  
where f = F2x2 .  These functions will be referred to here as 'Cartesian basis' spherical 
harmonics because they are special forms of Maxwell's spherical harmonics based on 
the Cartesian axes. The name is appropriate for the following reason as well: a general 
solid spherical harmonic A(") . n * Y" (with traceless A("') can be expressed in the form 

by applying (5.3) and (5.5). Thus the general harmonic is expressed as a linear 
combination of the Cartesian basis harmonics using coefficients that are the same, aside 
from a constant factor, as those appearing in the linear combination of Y" functions. 

It is worth noting that the components of .F-,Y" themselves conform to the general 
tensor contraction expression of 0 4.1, since F,Y" = F ( " 9 " )  . n Y", by (5.7). 

Equation (6.1) serves as a means of simplifying expressions involving the gradients, 
using the properties of the detracer (Applequist 1985). The form of F-,Y" obtained 
from (5.1) is usually suitable when needed in this connection. An alternative form 
which is useful for some analytical purposes and is especially efficient for numerical 
calculations may be obtained from the compressed tensor formalism. Since 

r2m = g ( m ; k 1 k 2 k 3 ) x  2ki y 2k2 z 2k3 

ki k2k3 
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we have, from (2.4) and (5.6), 

Here ,Yn~"1yflzzn3 denotes a component of F a r n  specified by indices n,n2n3. (Strictly 
speaking, Y,, operates only on the full set of components of r n  and not on an individual 
component.) Equations (6.1) and (6.2) together are equivalent to gradient formulae 
derived by other routes by Burgos and Bonadeo (1981) and by Cipriani and Silvi 
(1 982). 

7. Legendre polynomials 

7.1. Cartesian tensor form for Legendre polynomials 

The Legendre polynomial P,(cos e)  of degree n is a surface spherical harmonic which is 
widely used in harmonic expansions because of its natural origin in potential functions 
and its convenient properties of recurrence, differentiation, and integration (Hobson 
1931, MacRobert 1947). The connection between the Legendre polynomials and the 
Cartesian basis spherical harmonics, established in this section, provides a basis for 
transforming expansions from Legendre polynomial form to Cartesian tensor form, and 
vice versa. 

Theorem. Given vectors Y, s and the associated unit vectors t, s  ̂

for n = 0,1,2 ,... . 

Proof: Let R = / Y  - S I .  Then d"R-'/as" = (-l)"PR-'/dvfl, and the Taylor expansion 
for R-' about s = 0 becomes 

With (6.1) this becomes 

which converges for s < r .  But the coefficient of sn/rnf '  in this expansion is, by 
definition, P f l ( t * $ )  (MacRobert 1947, p73). Hence the first equality in (7.1) is proved. 
The second equality follows either from (5.4) or from the fact that the equation must 
hold when v  ̂ and s* are interchanged. 
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Corollary I .  For 9 = x / r ,  

Prooj  The corollary follows from (7.1) by letting s* be directed alc 
axis. 

Corollary I I .  Given unit vectors P and .t, 

the 
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(7.2) 

xitive x 

(7.3) 

for n=0,1 ,2 ,  . . .  

Proof: The corollary follows from (5.5) and (7. l), using (2n - 1) ! ! = (2n) ! / 2 " n ! .  

Comment. Equation (7.3) is an 'addition theorem' analogous to the better known 
relation (Edmonds 1974, p63) 

where 

y ( e ,  4)  = P;(COS e)e"@ (7.5) 

and (e ,  4)  are the spherical angles defining P and (e', 4') are those defining f. The right- 
hand sides of both (7.3) and (7.4) are sums of products of surface spherical harmonics 
evaluated at P and S: An important distinction is that the sum in (7.4) includes only 
2n + 1 products, while that in (7.3) includes (n  + l)(n + 2)/2 distinct products. 

Corollary I I I .  Given unit vector P, 

F,,P ' n . F n P  = (2n) !/2n (7.6) 

f o r n = 0 , 1 , 2  , . . . .  

Prooj 
n = 0 , 1 , 2  ) . . ' .  

The corollary follows from (7.3), setting s* = P, and using P,(l) = 1 for 

The left-hand side of (7.6) is the sum of squares of a set of surface spherical 
harmonics of degree n evaluated at P. The corollary says that this sum is independent 
of direction in space. A well-known analogy is the Unsold theorem (Slater 1968), 

Note. The real and imaginary parts of YT are each surface spherical harmonics known 
collectively as 'tesseral and sectoral surface harmonics of the first kind' (Hobson 1931, 
p91; Abramowitz and Stegun 1965). The notation of (7.5) follows Bottcher (1952, 
p90), and the Y," so defined are referred to here simply as tesseral harmonics. The 
normalised versions of these functions, commonly denoted Y,,, appear widely in 
quantum mechanical applications and in the theory of spherical tensors (Edmonds 
1974, p24, Gray and Gubbins 1984, p442). 
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7.2. Deriuatiue theorem .for Legendre polynomials 

We give here a further theorem that is useful in transforming a spherical harmonic 
expansion from a tensor contraction form to a Legendre polynomial form which is 
useful for numerical computations. It will be noted that both forms are based on 
Cartesian tensors. 

Theorem. Given vectors Y and s, 
dk 
d Sk 

~ ~ - ~ . ( n - k ) . Y , , v " =  (n -k ) ! rn - snPn(E . f )  

for k = 0 , 1 , 2  ,..., n. 

ProoJ The theorem follows from (3.3), letting An = Y-,Y" and applying (7.1). 

(7.7) 

Lemma. Given a function f( t .  3) whose derivative f'(t. f) with respect to the argument 
exists, 

(7.8) 
d 

d S  
- f ( t , f )  = s-lE.(I-ff)f'(E.f) 

where I is the second rank identity tensor. 

Proof: Using component notation, 

= f'?,(d,,/s - s,s,/s3) 

= f /S f 'PL ,  (ax,, - qq9  
The following are examples of (7.7) for k = 1,2, n, respectively. The first two are 

derived using (7.8). The expressions are obtained in terms of unit vectors by dividing 
through by r n F k  after performing the differentiations: 

s " - ' . ( n - l ) . ~ ~ v "  = ( n - 1 ) ! [ ~ ~ ~ ( E . f ) - f ~ ~ _ , ( t . f ) ]  (7.9) 
s"-* . ( n  - 2) . F~V" 

= ( n  - 2) ! [EEP: (E * f) + f3P:-2 (t . 3) - (8 + $E) f':!' (E * f) - ZPiPL (E. t)] (7.10) 

(7.1 1) 

Equations (7.9) and (7.10) will reappear in certain multipole potentials in 0 9. Equation 
(7.1 1 )  is an additional identity relating the surface spherical harmonics Y,,P and 
Pn(E. f), complementary to (7.1). 

a n  rnv" = -SS"P,(E~f). a Sn 

8. Cartesian basis spherical harmonics 

In 5 6 we found that the components of the tensor F,v" are surface spherical harmonics, 
and in 6 7.1 we saw that these functions obey an addition theorem and an 'Unsold' 
theorem analogous to those for the tesseral harmonics Y,"(O, 4). Such properties 
suggest that the Cartesian basis surface spherical harmonics might find wider use in 
roles normally filled by Y / ( O , 4 ) .  It seems worthwhile, therefore, to develop here 
some of the further general properties of FnP for future reference. Aside from certain 
relations in 5 8.1, the results in this section are not needed for the electrostatic problems 
that follow. 
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8.1. Relations among gradients and harmonics of successive degrees 

This subsection deals primarily with the solid spherical harmonics F,,Y", which are 
likely to be of greater significance than the surface harmonics when dealing with the 
three-dimensional gradients. The selection of identities here is limited to a few which 
seem particularly novel and significant. Others can be derived by combinations of those 
given. The known recurrence relations among the Legendre polynomials (Hobson 193 1, 
p32) lead to further identities in F,,P by way of (7.1), none of which are included here. 
The gradient operator V 

Theorem. 

i?/& is used throughout. 

Y . F n + l Y n + l  = (n + l ) r 2 F n r n .  (8.1) 
Proof. Since V'r-' is homogeneous of degree -n - 1, Euler's theorem gives 

The result (8.1) then follows by using (6.1). 

Theorem. 

, . . vn+ l  r -1 - - -(n + 1 ) ~ ~ r - l .  

(8.2) 

Proof. The theorem follows from (3.4) and the fact that the components of F n r "  are 
homogeneous of degree n. 

Theorem. 
( U .  V)~F-,Y" = n k F n r n  k = 0 , 1 ,  ..., C o .  (8.3) 

Proof: Euler's theorem gives 
Y '  VF,rn = n F n r n ~  

Equation (8.3) is obtained by applying the operator v . V  to the last equation k - 1 
times. 

Comment. The operator (v . V)k in (8.3) is distinct from the operator rk . k . Vk in (8.2) 
in that each factor Y .  V operates on both the Y and V parts of each factor following it 
in the former. 

Theorem. 
r2VYnYn  = (2n + 1 ) v ~ ~ v ~  - F,,+~Y"'. 

v n + l r - l  - - (-11n[-(2n + i ) r - 2 n - 3 r ~ n y n  + T - ~ ~ - ' V F , , Y ~ I  

(8.4) 
Proof. Takicg the gradient of both sides of (6.1), we have 

- (-l)n+lr-2n-3 O- ,,n+l 
J n + l  . - 

Equation (8.4) follows by rearrangement. Note that V and Y appearing as prefactors 
in (8.4) must have the same component indices, since they belong to tensors which are 
not totally symmetric. 

Corollary. 
rVF- ,P  = (n + I)~F,,P - F-,+~P+'. (8.5) 

ProoJ Equation (8.5) follows from (8.4) by inserting the relation 
VF/ = VrnF, ,P = nrn-2YFnP + rnVeF,,P. 
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8.2. Linearly independent subsets of F-,P 

The number of linearly independent surface spherical harmonics of degree n is 2n + 1. 
However, .T,,P, in the form of a compressed tensor F,2"'9"22"', has ( n  + l ) ( n  + 2 ) / 2  
components with different indices nln2n3. These are not all independent owing to the 
fact that the tensor is totally traceless. The 1-fold trace, being a tensor of rank n - 2, 
contains n(n - 1) /2  components, each of which, set equal to zero, gives a linear relation 
among three components of F-,v". Hence, the number of independent components of 
this tensor is (n  + l ) ( n  + 2 ) / 2  - n(n - 1)/2 = 2n + 1 ,  as required. The following theorem 
provides a means of choosing a subset of linearly independent components. 

Theorem. The components of F,2"19"2z^"3 in which n3 = 0 or 1 constitute a linearly 
independent subset with 2n + 1 components. 

ProoJ: From (2.2) it is seen that each trace relation requires one component in which 
the exponent of z* is 2 or more. Thus there are no trace relations among the components 
in which n3 = 0 or 1. When n3 = 0, there are n+ 1 sets (n , , nJ  such that nl +n,+n3 = n. 
When n3 = 1, there are n such sets. Hence there are 2n + 1 components with n3 = 0 or 
1. 

The linearly independent subset specified in the theorem gives unique status to the 
z axis. Two other linearly independent subsets may be obtained by choosing the x 
or y axis to have this status. Table 1 shows the independent subsets specified by the 
theorem for n = 1,2,3. 

Table 1. Linearly independent subsets of ,YnP 

1 1 0 0  
0 1 0  
0 0 1  

2 2 0 0  
1 1 0  
1 0 1  
0 2 0  
0 1 1  

3 3 0 0  
2 1 0  
2 0 1  
1 2 0  
1 1 1  
0 3 0  
0 2 1  

a 
9 
5 

322 - 1 
3 a j  
3.25 
392 - 1 
392 

15P3 - 9.2 
1 5P29 - 39 
15.2'2 - 32 
15.2j2 - 32 
15.292 
15j3 -99  
1 5 j 2 2  - 3 i  

8.3. Comparison with YT(6,$)  

The functions in table 1 are closely related to the tesseral harmonics Y / ( ~ , c # J ) ,  when 
the latter are expressed in Cartesian form (Edmonds 1974, p124). The corresponding 
Y,"(6,$) are best known as the angular part of the hydrogen atom wavefunctions 
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(unnormalised) for p, d and f orbitals. However, there are significant differences. For 
n = 2, for example, table 1 lists the functions 3k2 - 1 and 3j2 - 1 in place of the 
usual d12 and dX2+ functions, which are linear combinations of the former. In g 8.5 
this linear transformation will be treated generally. At this point it seems worthwhile 
to summarise some major similarities and differences between the F n P  and Y$(B,q5) 
functions, in addition to those noted in 6 7.1. 

(i) Both functions are solutions to the same partial differential equation, the angular 
part of the Laplace equation. 

(ii) Like the F,,P components, Y[(O,q5) can be derived in the form A(") * n . P, 
where A(") is a totally symmetric and traceless tensor. For this purpose one takes 
A(n) = an, where U is a non-vanishing vector satisfying a . a  = 0 (Bottcher 1952, p86). 
Consequently a is complex, and Y$(O,q5) is likewise complex. F,,P, by contrast, is real. 

(iii) Y[(O,q5) can be expressed as a product of functions of the form f(O)g(q5) 
according to ( 7 3 ,  while this is not generally true for F, ,P;  for example F 2 k 2  = 
3k2 - 1 = 3 sin2 Ocos2 4 - 1.  It might be noted that the condition of separability of 
variables is usually imposed for convenience in deriving solutions to the Schrodinger 
equation for the hydrogen atom, necessarily resulting in solutions of the form Y/(O, 4)  
(Pauling and Wilson 1935). 

(iv) YT(O,q5) and Y$'(O,q5), with m # m', are orthogonal (Bottcher 1952, p473) 
while members of a linearly independent subset of F,,P are not in general orthogonal 
(see 0 8.6). 

(v) Both YT(O,$) and the linearly independent subset of F,,P contain 2 n +  1 com- 
ponents. Both sets thus constitute irreducible tensors, since they contain the minimum 
number of components which transform under rotations by linear combinations among 
themselves (Gray and Gubbins 1984, p477, p493). 

8.4. F,,P in terms of its linearly independent subset 

Since F,,P contains redundant components, we wish to express all components in 
terms of a linearly independent subset. The following theorem gives the necessary 
expression when the subset is chosen as in 4 8.1, with the z axis as the unique axis. 

Theorem. Any component of F,,P is given by 

~ , , ; - n , + 2 m j p 2 + 2 ~ - 2 m  Z ~ 3 - 2 ~  

m=O 

where v = [n3/2] ,  nl + n2 + n3 = n and (i) = v ! / m ! ( v  - m ) ! ,  

Comment. The exponent of 2 in the summand of (8.6) is 0 or 1, according as n3 is even 
or odd, respectively. Thus the sum includes only members of the linearly independent 
subset. 

A n ,  An2 An3 Proof: Let T(n,n2n3) = F , , x  y z . By introducing trace relations of the form (2.2), 
we reduce the third index to 0 or 1 in v successive steps: 

T(n,n2n3) = -T (n ,  + 2, n2, n3 - 2) - T ( n , ,  n2 + 2, n3 - 2) 
= [ T ( n ,  + 4, n2, n3 - 4) + T ( n ,  + 2, n2 + 2, n3 - 4)] 

+ [ T ( n ,  + 2 , n 2 + 2 , n 3 - 4 ) + T ( n l , n 2 + 4 , n 3 - 4 ) ]  
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= (-1)'' ('') ~ ( n ,  + 2m, n2 + 2v - 2m, n3 - 2v) .  
m=O 

Each substitution step doubles the number of terms and subtracts 2 from the third 
index. The binomial coefficient in the final summand is the number of different 
sequences of steps by which m increments of 2 are added to the first index and (v - m) 
increments of 2 are added to the second index. All 2" terms are thus accounted for. 

8.5. Y;(O,$) in terms of F,,P 

The following theorem provides a means of generating the tesseral harmonics from the 
Cartesian basis surface spherical harmonics. 

Theorem. For 0 5 m 5 n, 

ProoJ: From the theory of the gradients of r-l (Hobson 1931, p134), one has 

Here a factor (-1)'" appearing in Hobson's treatment is omitted in order to conform 
to common usage in the physics literature, where a factor (-l)m included in Hobson's 
definition of P,"(cosO) is omitted. By applying the binomial theorem and (6.1) to the 
left-hand side of ( 8 4 ,  one obtains (8.7). 

Comment. For harmonics of negative order we have (Hobson 1931, p90) 

(n  - m) ! 
(n  + m) ! 

P,"(COS 0) = (-1y- P,"(cos 0) 

and hence, from (7.5), 

(n  - m) ! 
Yn-"(0, 4) = (-1y- (n  + m) ! YF" (034) 

which extends (8.7) to negative orders. 

The components of F,P in (8.7) are not all linearly independent. By introducing 
(8.6) into (8.7), a relation between Y r ( O , 4 )  and a linearly independent subset of Y-,P 
is obtained. The relation can be represented by a square transformation matrix of 
order 2n + 1, since there are 2n + 1 components in both basis sets. (The matrix is 
not, in general, unitary; hence the inverse transformation cannot be carried out by the 
conjugate transpose matrix.) 
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8.6. Values of F,,P on the coordinate axes 

The values of the components of F,,P on the coordinate axes are easily obtained, and 
serve to locate certain nodes and extrema of the functions. We use (6.2) to evaluate the 
functions at ( x , y , z j  = (1,0,0) on the x axis. The values on the y and z axes can then 
be obtained by cyclic permutation of indices. At the point of interest, all terms of the 
function vanish except the one for which n2 - 2m, = 0 and n3 - 2m, = 0. When n2 or 
n3 is odd, this condition cannot be met, and the function vanishes. For even values of 
n2 and ng,  we set r = x = 1 in (6.2) and obtain 

1)('2+"3)/~(n~ - 1) ! ! ( n 3  - I)!!  *nl *n2 en3 y n x  Y 3-$=1 = (- 

using the identity (n  - 1 j ! ! = [ n ; 2 ]  for even n. The value at (-l ,O, 0) is, from (6.2), 

Two special cases take a simple form which follows from (7.2). Since P,(1) = 1, and, 
for even n, P,(O) = (-l)"'2[(n- 1)!!I2/n!  (Hobson 1931, p17), we find 

F,.?"] .~=, = n !  

J 0- ,y ] = ( - ~ ) " / ~ [ ( n  - I ) !  ! 1 2  n even. 

8.7. Integrals involcing F,v" 

In this section we obtain a number of integrals which occur, for example, when 
expressions involving Vnrr-' are integrated over regions with spherical symmetry. The 
Laplace theorem of orthogonality of spherical harmonics of different degrees (Hobson 
1931, p144) gives 

where the integral is over the surface of the unit sphere and m,n are non-negative 
integers. Equation (8.9) means that all components vanish in the tensor of rank m + n 
implied by the integral. For the special case m = 0, (8.9) becomes 

l F , , P  ds = 0 n =  1,2, . . . .  

A theorem due to Hobson (1931, ~1.56) gives 

~ P F , , P  ds = 0 m < n or m + n odd 
5 

where m and n are non-negative integers. The case where m 2 n and m + n is even is 
also covered by Hobson's theorem, but the explicit formula requires some derivation. 
This is supplied by the following. 



4322 J Applequist 

Theorem. If m and n are non-negative integers with m 2 n and m + n even, then, with 
m,  + m2 + m3 = m and n, + n2 + n3 = n, 

p y " m 3 s n a ~ l j n 2 ; n ~  ds 

g(k;k ,k ,k , )  
- 2n+2n(n + k)  !m,  !m2 !m3 ! 

J: 
- 

k ! ( m + n +  l ) !  
kik2ki  

x g u ;  i(m, - n , )  + j ,  - k , ,  i ( m 2  - n2) +I2 - k2, 2(m3 1 - n3) + j 3  - k31 
(8.10) 

where k = i ( m  - n), j = j ,  + j 2  + j 3 ,  and the g function is zero if any argument is 
negative or non-integral. 

Comment. The theorem implies that the integral vanishes if any mi-n, is odd (i = 1,2,3) ; 
i.e. if corresponding indices have opposite parity. 

Proof: Hobson's theorem for this case states that, for any solid spherical harmonic 
H,(r )  of degree n 

2"'n(n + k)  ! ~2"141"""3Hn(t) ds = k ! ( m + n +  l ) !  V W ,  ( V )  ym2 z"3 (8.1 1 )  

where 

V 2 k  = (V: + V i  + V:)k = g ( k ;  k l k 2 k 3 ) V ~ k 1 V ~ k 2 V ~ k 3 .  
ki kzk i  

Let H,(r) = .7,,r", so H,(V)  = .7nV7iVTVi3.  One applies the latter to (8.11) to obtain 
(8.10), using (5.6) and recognising that, for a + b + c = A + B + C ,  V f V f V f x a y b z c  
vanishes unless A = a, B = b, and C = c, and is then equal to a!b !c ! .  

For the product of a pair of components of Y n r n  we have the following integral 
theorem, which gives the condition for orthogonality. 

Theorem. For non-negative integers u,,n,, ( i  = 1,2,3) such that u,+u2+u3 = n,+n,+n3 = 
n, 

J ~ n , a ~ p ; a 3 y f l g n l  y 2 p  ds 

where m = m,  + m2 + m3 and the g function is zero if any argument is negative or 
non-integral. 
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Comment. The theorem implies that the integral vanishes if any ai-ni is odd ( i  = 1,2,3); 
i.e. if corresponding indices have opposite parity. 

ProoJ Let Y,,(r) be the nth-degree solid spherical harmonic 

If Z,(r) is any nth-degree solid spherical harmonic, Hobson's theorem (Hobson 1931, 
pl57) becomes 

(8.13) 

Let Z,(r) = n!F-,xnIyfl2zn3. Then (8.12) follows from (8.13), using (6.2). 

For example, in F 2 2 2  and F2j2 all indices are even, and (8.12) gives -8n/5 for the 
surface integral of the product. On the other hand, F2i2 and F 2 2 j  are orthogonal, 
as the corresponding indices are of opposite parity. 

By setting ai = ni (i = 1,2,3) in (8.12) we have the following corollary, giving the 
integral which could be used to normalise the components of F , P .  

Corollary. For non-negative integers n, such that n,  + n2 + n3 = n, 

~(F,,2"ij"2;""'2 ds 

[fli /21 b2/21 [fl3/21 - 4nn1 !n2 !n3 ! - 
ml=0 m2=0 m,=O 

2n+ 1 

x (2n - 2m - 1) ! ! [:] [ z ]  g(m;m1m2m3) (8.14) 

where m = ml + m2 + m3. 

rule for the normalisation integrals: 
Finally, by integrating (7.6) over the unit sphere, and using (2.1), we obtain a sum 

4n(2n)! 
g(n;n,n,n,) ~ ( F , P " i j ) " 2 $ " 3 ) 2 d s  = ~ 2" a 

n 1 ~ 3  

This result is obtained independently of (8.14), and may be useful as a check on the 
latter. 

9. Electrostatic potentials of charges in a dielectric cavity 

The method of traceless Cartesian tensor forms for spherical harmonics will be used 
here to treat some problems of the electrostatic potential in a dielectric medium 
containing an arbitrary charge distribution in a spherical cavity. Such problems have 
been important in molecular theories of condensed phases (see, for example, Bottcher 
1952, Felder and Applequist 198 l), and the present formalism provides a convenient 
means of including higher-order effects in such theories. We are concerned with the 
potential and its gradients of all orders inside and outside the cavity. 
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9.1. Multipole expansion of potential in empty space 

Let p ( s )  be the electric charge density at point s for an arbitrary charge distribution 
located within a finite circumsphere in empty space. The nth-order multipole moment 
of the charge distribution about the origin is defined by 

where the integration is over the volume of the circumsphere. The potential &(Y) 
arising from p ( s )  at any point Y outside the circumsphere is given by the familiar 
multipole expansion (Bottcher et a1 1973, p44) : 

n=O 

Equation (9.1) is equivalent to an expansion in terms of the Cartesian basis spherical 
harmonics, by virtue of (6.1). We introduce the traceless multipole moment M(") = 
Fnp(n), and obtain from (5.4), (5.5) and (6.1) the useful identities 

Either expression, substituted in (9.1), gives an alternative form to the spherical har- 
monic expansion (cf Applequist 1985). (9.2) demonstrates the well known fact that the 
nth-order multipole potential varies as rPn-' ,  and in addition shows that the coefficient 
of r-ll-l is just the projection of M ( n )  on Y, according to 3 3.2. 

9.2. Potentials and their gradients f o r  arbitrary charge distribution 

A spherical cavity of radius a is located inside a continuous medium of dielectric 
constant E .  Within the cavity is placed a charge distribution p(v)  which is zero outside 
a radius b from the cavity centre, with b < a, so that an arbitrarily thin charge-free 
region of the cavity exists next to the cavity wall. 

9.2.1. Potentials in cavity and dielectric. The polarisation of the medium by the charges 
in the cavity produces a potential outside the cavity and a potential dp2 inside 
the cavity. Both potentials obey the Laplace equation throughout their respective 
regions, since, in the outer region, the charge density is zero everywhere, and, in the 
inner region, the superposition principle permits one to ignore the charge p ( v )  because 
it does not contribute to $p2. Thus the potentials may be represented by spherical 
harmonic expansions (Bottcher 1952, p472), which we write as 

(9.4) 
n=O 

(9.5) 
n=O 
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where A(') and E@) are totally symmetric and traceless tensors of rank n, to be 
determined by the boundary conditions at the cavity wall. The condition that q5p, (Y) -+ 0 
as r + OD has been incorporated in (9.4) by including spherical harmonics of negative 
degree only, and the condition that $ J ~ ~ ( Y )  remain finite at r = 0 has been incorporated 
in (9.5) by including spherical harmonics of non-negative degree only. The solution 
of the boundary value problem follows Bottcher (1952, p94) in most respects. The 
most notable distinction is our use of Cartesian tensors in place of the spherical tensors 
of Bottcher's spherical harmonic expansions. Thus we obtain potentials expressed in 
terms of the Cartesian multipole moments in a form that lends itself readily to the 
calculation of potential gradients of all orders. 

Let the total potential outside the cavity be 41(~),  and let that inside the cavity in 
the shell b < r < a be d 2 ( r ) .  Then # , ( r )  = &(Y) + CpPl(r) and (P2(r) = &(Y) + #p2(r). 
The boundary conditions at the cavity wall are 

lim 4l ( r )  = lim &(Y) 
r+a+ r+u- 

Application of these conditions using (9.1), (9.2), (9.4) and (9.5) leads to expressions of 
the form (4.1), from which A(n) and can be evaluated in terms of M('). Thus we 
find 

From (9.1), (9.2) and (9.8) we then have 

(9.8) 

(9.10) 

9.2.2. Field gradients in dielectric. The mth-order electric field gradient in the dielectric 
outside the cavity is 

E, ( m )  (Y) = -V'"$,(Y). (9.1 1) 

Substituting (9.2) and (9.3) into (9.10) and applying (6.1) and (9.11), we find 

The right-hand side is a totally symmetric and traceless mth-rank tensor, as it must be 
to satisfy (9.1 I), whose right-hand side is the mth-order gradient of a potential which 
satisfies the Laplace equation. It is noteworthy that E';")(v) is independent of the cavity 
radius. 
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9.2.3. Reaction field gradients in cavity. 
the cavity is 

The mth-order reaction field gradient inside 

E;)(V) = -V'"@,,~(Y). 
By applying (3.3) to (9.9) we obtain 

EP)(r) = ( E  - 1) (n - m) . P-". (9.12) (n + l ) !  a-2n-l r n - m M ( n ) .  
X 

(n - m) !(ns + E + n) n=m 

Again, the right-hand side is a totally symmetric and traceless mth-rank tensor, as 
required. At r = 0 only the n = m term survives, so that 

(9.13) 

Hence, at the cavity centre only the nth-order multipole moment contributes to the 
nth-order reaction field gradient. For n = 1, (9.13) becomes the known result for the 
dipole reaction field, Et)(O) = [ 2 ( ~  - 1 ) / ( 2 ~  + l)a3]M(') (Bottcher 1952, p67). 

9.3. Potentials and their gradients for point multipole in cavity 

In molecular problems one may wish to treat the interactions among a number of 
separate charge distributions within the cavity. For this purpose it is convenient to 
assume that a given charge distribution is confined to an infinitesimal volume at point 
s within the cavity and possesses multipole moments ji(k) about s, where the overbar 
indicates that the origin of the moment is not the cavity centre. In the following we 
consider the potentials due to a single point multipole moment of arbitrary order 
k .  A summation over all k would give the potential of a general charge distribution 
in the cavity when s is chosen as origin, though this summation is omitted here for 
simplicity. 

The multipole moments of the kth-order point multipole about the cavity centre 
are (Applequist 1984) 

(9.14) 

where the sum over P (n, k )  is the sum over all partitions of the n component indices 
into sets of k and n - k indices. In the following sections we require also the relations 

(9.15) M(") . n . P = p,(n) . n . y n P  

from (5.4), and 

(9.16) 

from the fact that the sum on the left-hand side consists of n!/k!(n-k)! identical terms. 
From (9.14) and (9.16) we have 

n (9.17) p ( n )  . , y ,$" = f - k D ; k ) ( t , g )  . k . p ( k )  

where 

(9.18) 

where the last equality follows from (7.7). 
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9.3.1. Potentials in cavity and in dielectric. 
(9.10), we obtain 

Inserting (9.15) and (9.17) into (9.9) and 

a-2n-1 r f l  s fl-kD(k) (t, .E) k ji'k'. 
s. 

n=k 

(9.19) 

(9.20) 

The corresponding expressions for &, I $ ~ , ,  and +2 are not required for what follows, 
but they may be obtained in a similar manner. Equations (9.19) and (9.20) may be 
cast in a useful form for computations using (7.1), (7.9) and (7.10) for k = 0,1,2, 
respectively, corresponding to the cases of a charge, dipole, and quadrupole located 
at s. For k = 0, (9.19) is identical to an expression derived earlier from results of 
Kirkwood (Felder and Applequist 1981, Kirkwood 1934). 

9.3.2. Field gradients in dielectric. To obtain EY' we require the relation 

from (6.1) and (9.18). Hence, from (9.11) and (9.19), 

&. 

2n + ) r-n-m-l s n-k Dn+,,, (k+m) (k,.E) * k * F'k'. 
n & + & + n  

EY)(r) = (-l)m ( 
n=k 

9.3.3. Reaction field gradients in cavity. E r )  for the point multipole case may be 
calculated from (9.12), using M(") obtained by applying Fn to both sides of (9.14). For 
the case m = 1 a more useful formula is obtained from the gradient of (9.20), using the 
relation 

which follows from (8.4) and (9.18). Hence the reaction field is 

X 
$- ) a-2n-1 n-l n-k r s  

n & + & + n  ( E!)(r) = ( E  - 1) 
n=k 

x [(2n + l)tDkk)(?, .E) - Di2"(E, 31 . k * p'k). (9.21) 

Higher gradients of the reaction field may be obtained by repeated application of 
(8.4) and (9.18) to (9.21), though I have not found a compact form for the mth-order 
gradient by this method. For the case k = 1, (9.21) corresponds to the dipole reaction 
field derived earlier (Felder and Applequist 198 1) in terms of spherical coordinates. 
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10. Electrostatics of a dielectric sphere embedded in a dielectric medium 

Consider a homogeneous dielectric with dielectric constant in the presence of external 
charges which, with the apparent charges induced in the outer surface of the dielectric, 
give rise to a static potential 4 e ( ~ )  and the related gradients Er)(v) = -Vn4e(r )  within 
the dielectric. The potential is completely specified by the gradients at the origin by 
virtue of the Taylor series 

(10.1) 

Now let a homogeneous dielectric sphere of radius a and dielectric constant c2 be 
embedded in the medium with its centre at the origin. It is assumed that the sphere is 
infinitely far from the boundaries of the outer dielectric, so that it has no effect on the 
external charges or apparent surface charges, and hence leaves all Er)(O) unchanged. 
In the following we will consider the field gradients that exist within the sphere, the 
multipole moments induced in the sphere, and the Lorentz internal (or ‘effective’) field 
gradients in the sphere. 

10.1. Field gradients in embedded sphere 

The presence of the embedded sphere gives rise to an additional potential 4 s l ( ~ )  
outside the sphere and 4s2(~) inside the sphere, so that the total potential outside is 
$I~(Y) = 4 , ( r )  + 4 s l ( v )  and that inside is &(Y) = c$~(Y)  + 4s2(r) .  As in 0 9.2.1, these 
additional potentials may be expressed as the spherical harmonic expansions 

n=O 
-,- 

(10.2) 

(10.3) 

where the totally symmetric and traceless tensors C‘”) and D@) are to be determined by 
the boundary conditions at the surface of the sphere. These conditions are (9.6) and, 
in place of (9.7), 

f 841 . 842 lim E , -  = lim E * - .  
r--1uA d r  r-a- ar 

Again, the boundary conditions, with (10.2) and (10.3), lead to two spherical harmonic 
expansions of the form (4.1), from which one finds, for n = 1,2,. . ., 

C(n) = a2n+1D(n)  

(10.4) 

Thus (lO.l), (10.3) and (10.4) give an expansion for r$2(r) whose coefficients of Y” are 
-( 1 /n!)EF)(O) ; hence 

(10.5) 
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At any point Y within the sphere we use the Taylor expansion 

vmpn . (m - n) . E ~ ) ( o ) .  (1 0.6) (2m + 1 ) q  
(m - n)!(ms, + E ]  + me2) m=n 

If the external field is uniform, all gradients vanish except E:')(Y) = Ek')(O), and (10.6) 
reduces to the known relation E!)(Y) = [3e1/(2q + EJ]E:')(O) (Bottcher 1952, p52). 

10.2. Lorentz internal field gradients and induced multipole moments in sphere 

The embedded sphere acquires the induced multipole moments M(") (traceless) in the 
presence of the external field gradients Er). The field acting on the sphere is the field 
due to all charges and polarisations outside the sphere, which is the Lorentz internal 
field, whose gradients we will denote as E:")(Y). The internal field gradients may be 
regarded as consisting of two terms: (i) the cavity field gradients E t )  present inside 
the spherical region when its material contents are removed; and (ii) the reaction field 
gradients E:) produced when the polarised sphere is returned to the cavity (cf Bottcher 
et al 1973). Thus 

E,'"(O) = EP)(O) + E[)(O) (10.7) 

where Et'(0) is given by (10.5) with E~ = 1 and Ef'(0) is given by (9.13) with E = E].  A 
previous treatment (Applequist 1985) of the induced multipole moments of a dielectric 
sphere applies when Ei")(O) is taken as the field of all charges outside the sphere, so 
that 

(E* - I)a2"+' M(") = Eln)(0). 
(n - l ) ! (ns2+n+1)  

From (10.7) and (10.8) we find 

and 

Er)(O) &](ne2 + n + 1) 
n q  + E ]  + nc2 

E/")(O) = 

(10.8) 

(10.9) 

(10.10) 

The Lorentz internal field gradient at any point within the sphere may be obtained by 
a Taylor expansion similar to (10.6). It should be noted that E:") is not the same as E!), 
because the latter includes contributions from charges and polarisations both inside 
and outside the sphere. Thus (10.5) and (10.10) are identical when E~ = 1, i.e. when 
there is no matter in the sphere. 

From (10.9) it is seen that the nth-order multipole moment is determined solely by 
the nth-order external field gradient at the origin. For the case E ]  = 1, (10.9) is identical 
to the result for a dielectric sphere in a vacuum (Applequist 1985). 
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10.3. Lorentz internal field gradients in a homogeneous dielectric 
If el = E~ = E, then the entire system is a homogeneous dielectric. It is the internal field 
acting on a spherical region of such a system that was the subject of Lorentz' original 
investigation, whose object was to determine the field acting on the molecules of the 
medium. From (10.10) we have for this case 

n e + n + l  
2n+ 1 

E,(")(O) = EF)(O). (10.1 1) 

For n = 1, (10.11) becomes the familiar Lorentz internal field Ei')(O) = [(&+2)/3]Ed1)(0) 
(Bottcher 1952, p177). For n = 2, (10.11) becomes E!2'(0) = [ ( 2 ~  + 3)/5]Ed2)(0), which is 
equivalent to a result obtained by Lorentz (1904, p214). 

The results obtained here are rigorous for continuous media in static electric fields, 
and will have approximate validity in some time-dependent fields. However, it should 
be noted that a quantity such as V x E!'), which is of interest in electrodynamics, 
vanishes in a static field, and therefore cannot be obtained from (10.11). 
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